Algoritmo de codificación de Huffman

En este tutorial, aprenderá cómo funciona la codificación Huffman. Además, encontrará ejemplos prácticos de codificación Huffman en C, C ++, Java y Python.

La codificación Huffman es una técnica de compresión de datos para reducir su tamaño sin perder ninguno de los detalles. Fue desarrollado por primera vez por David Huffman.

La codificación Huffman generalmente es útil para comprimir los datos en los que hay caracteres que aparecen con frecuencia.

¿Cómo funciona la codificación Huffman?

Suponga que la siguiente cadena se enviará a través de una red.

Cadena inicial

Cada carácter ocupa 8 bits. Hay un total de 15 caracteres en la cadena anterior. Por lo tanto, 8 * 15 = 120se requiere un total de bits para enviar esta cadena.

Usando la técnica de codificación Huffman, podemos comprimir la cuerda a un tamaño más pequeño.

La codificación de Huffman primero crea un árbol usando las frecuencias del carácter y luego genera código para cada carácter.

Una vez que los datos están codificados, deben decodificarse. La decodificación se realiza utilizando el mismo árbol.

La codificación Huffman evita cualquier ambigüedad en el proceso de decodificación utilizando el concepto de código de prefijo, es decir. un código asociado con un carácter no debe estar presente en el prefijo de ningún otro código. El árbol creado anteriormente ayuda a mantener la propiedad.

La codificación de Huffman se realiza con la ayuda de los siguientes pasos.

  1. Calcula la frecuencia de cada carácter de la cadena. Frecuencia de cuerda
  2. Ordena los caracteres en orden creciente de frecuencia. Estos se almacenan en una cola de prioridad Q. Caracteres ordenados según la frecuencia
  3. Haz que cada personaje sea único como un nodo hoja.
  4. Cree un nodo vacío z. Asigne la frecuencia mínima al hijo izquierdo de z y asigne la segunda frecuencia mínima al hijo derecho de z. Establezca el valor de z como la suma de las dos frecuencias mínimas anteriores. Obtener la suma de los menores números
  5. Elimine estas dos frecuencias mínimas de Q y agregue la suma a la lista de frecuencias (* denota los nodos internos en la figura anterior).
  6. Inserte el nodo z en el árbol.
  7. Repita los pasos 3 a 5 para todos los personajes. Repita los pasos 3 a 5 para todos los personajes. Repita los pasos 3 a 5 para todos los personajes.
  8. Para cada nodo no hoja, asigne 0 al borde izquierdo y 1 al borde derecho. Asignar 0 al borde izquierdo y 1 al borde derecho

Para enviar la cadena anterior a través de una red, tenemos que enviar el árbol así como el código comprimido anterior. El tamaño total viene dado por la siguiente tabla.

Personaje Frecuencia Código Talla
UN 5 11 5 * 2 = 10
segundo 1 100 1 * 3 = 3
C 6 0 6 * 1 = 6
re 3 101 3 * 3 = 9
4 * 8 = 32 bits 15 bits 28 bits

Sin codificación, el tamaño total de la cadena fue de 120 bits. Después de codificar, el tamaño se reduce a 32 + 15 + 28 = 75.

Decodificando el código

Para decodificar el código, podemos tomar el código y recorrer el árbol para encontrar el carácter.

Dejemos que 101 se decodifique, podemos recorrer desde la raíz como se muestra en la figura siguiente.

Descodificación

Algoritmo de codificación de Huffman

crear una cola de prioridad Q que consta de cada carácter único. ordenar luego en orden ascendente de sus frecuencias. para todos los caracteres únicos: crear un newNode extraer el valor mínimo de Q y asignarlo a leftChild de newNode extraer el valor mínimo de Q y asignarlo a rightChild de newNode calcular la suma de estos dos valores mínimos y asignarlo al valor de newNode insert este newNode en el árbol devuelve rootNode

Ejemplos de Python, Java y C / C ++

Python Java C C ++
 # Huffman Coding in python string = 'BCAADDDCCACACAC' # Creating tree nodes class NodeTree(object): def __init__(self, left=None, right=None): self.left = left self.right = right def children(self): return (self.left, self.right) def nodes(self): return (self.left, self.right) def __str__(self): return '%s_%s' % (self.left, self.right) # Main function implementing huffman coding def huffman_code_tree(node, left=True, binString=''): if type(node) is str: return (node: binString) (l, r) = node.children() d = dict() d.update(huffman_code_tree(l, True, binString + '0')) d.update(huffman_code_tree(r, False, binString + '1')) return d # Calculating frequency freq = () for c in string: if c in freq: freq(c) += 1 else: freq(c) = 1 freq = sorted(freq.items(), key=lambda x: x(1), reverse=True) nodes = freq while len(nodes)> 1: (key1, c1) = nodes(-1) (key2, c2) = nodes(-2) nodes = nodes(:-2) node = NodeTree(key1, key2) nodes.append((node, c1 + c2)) nodes = sorted(nodes, key=lambda x: x(1), reverse=True) huffmanCode = huffman_code_tree(nodes(0)(0)) print(' Char | Huffman code ') print('----------------------') for (char, frequency) in freq: print(' %-4r |%12s' % (char, huffmanCode(char)))
 // Huffman Coding in Java import java.util.PriorityQueue; import java.util.Comparator; class HuffmanNode ( int item; char c; HuffmanNode left; HuffmanNode right; ) // For comparing the nodes class ImplementComparator implements Comparator ( public int compare(HuffmanNode x, HuffmanNode y) ( return x.item - y.item; ) ) // IMplementing the huffman algorithm public class Huffman ( public static void printCode(HuffmanNode root, String s) ( if (root.left == null && root.right == null && Character.isLetter(root.c)) ( System.out.println(root.c + " | " + s); return; ) printCode(root.left, s + "0"); printCode(root.right, s + "1"); ) public static void main(String() args) ( int n = 4; char() charArray = ( 'A', 'B', 'C', 'D' ); int() charfreq = ( 5, 1, 6, 3 ); PriorityQueue q = new PriorityQueue(n, new ImplementComparator()); for (int i = 0; i 1) ( HuffmanNode x = q.peek(); q.poll(); HuffmanNode y = q.peek(); q.poll(); HuffmanNode f = new HuffmanNode(); f.item = x.item + y.item; f.c = '-'; f.left = x; f.right = y; root = f; q.add(f); ) System.out.println(" Char | Huffman code "); System.out.println("--------------------"); printCode(root, ""); ) )
 // Huffman Coding in C #include #include #define MAX_TREE_HT 50 struct MinHNode ( char item; unsigned freq; struct MinHNode *left, *right; ); struct MinHeap ( unsigned size; unsigned capacity; struct MinHNode **array; ); // Create nodes struct MinHNode *newNode(char item, unsigned freq) ( struct MinHNode *temp = (struct MinHNode *)malloc(sizeof(struct MinHNode)); temp->left = temp->right = NULL; temp->item = item; temp->freq = freq; return temp; ) // Create min heap struct MinHeap *createMinH(unsigned capacity) ( struct MinHeap *minHeap = (struct MinHeap *)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHNode **)malloc(minHeap->capacity * sizeof(struct MinHNode *)); return minHeap; ) // Function to swap void swapMinHNode(struct MinHNode **a, struct MinHNode **b) ( struct MinHNode *t = *a; *a = *b; *b = t; ) // Heapify void minHeapify(struct MinHeap *minHeap, int idx) ( int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left size && minHeap->array(left)->freq array(smallest)->freq) smallest = left; if (right size && minHeap->array(right)->freq array(smallest)->freq) smallest = right; if (smallest != idx) ( swapMinHNode(&minHeap->array(smallest), &minHeap->array(idx)); minHeapify(minHeap, smallest); ) ) // Check if size if 1 int checkSizeOne(struct MinHeap *minHeap) ( return (minHeap->size == 1); ) // Extract min struct MinHNode *extractMin(struct MinHeap *minHeap) ( struct MinHNode *temp = minHeap->array(0); minHeap->array(0) = minHeap->array(minHeap->size - 1); --minHeap->size; minHeapify(minHeap, 0); return temp; ) // Insertion function void insertMinHeap(struct MinHeap *minHeap, struct MinHNode *minHeapNode) ( ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq array((i - 1) / 2)->freq) ( minHeap->array(i) = minHeap->array((i - 1) / 2); i = (i - 1) / 2; ) minHeap->array(i) = minHeapNode; ) void buildMinHeap(struct MinHeap *minHeap) ( int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i>= 0; --i) minHeapify(minHeap, i); ) int isLeaf(struct MinHNode *root) ( return !(root->left) && !(root->right); ) struct MinHeap *createAndBuildMinHeap(char item(), int freq(), int size) ( struct MinHeap *minHeap = createMinH(size); for (int i = 0; i array(i) = newNode(item(i), freq(i)); minHeap->size = size; buildMinHeap(minHeap); return minHeap; ) struct MinHNode *buildHuffmanTree(char item(), int freq(), int size) ( struct MinHNode *left, *right, *top; struct MinHeap *minHeap = createAndBuildMinHeap(item, freq, size); while (!checkSizeOne(minHeap)) ( left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); ) return extractMin(minHeap); ) void printHCodes(struct MinHNode *root, int arr(), int top) ( if (root->left) ( arr(top) = 0; printHCodes(root->left, arr, top + 1); ) if (root->right) ( arr(top) = 1; printHCodes(root->right, arr, top + 1); ) if (isLeaf(root)) ( printf(" %c | ", root->item); printArray(arr, top); ) ) // Wrapper function void HuffmanCodes(char item(), int freq(), int size) ( struct MinHNode *root = buildHuffmanTree(item, freq, size); int arr(MAX_TREE_HT), top = 0; printHCodes(root, arr, top); ) // Print the array void printArray(int arr(), int n) ( int i; for (i = 0; i < n; ++i) printf("%d", arr(i)); printf(""); ) int main() ( char arr() = ('A', 'B', 'C', 'D'); int freq() = (5, 1, 6, 3); int size = sizeof(arr) / sizeof(arr(0)); printf(" Char | Huffman code "); printf("--------------------"); HuffmanCodes(arr, freq, size); )
 // Huffman Coding in C++ #include using namespace std; #define MAX_TREE_HT 50 struct MinHNode ( unsigned freq; char item; struct MinHNode *left, *right; ); struct MinH ( unsigned size; unsigned capacity; struct MinHNode **array; ); // Creating Huffman tree node struct MinHNode *newNode(char item, unsigned freq) ( struct MinHNode *temp = (struct MinHNode *)malloc(sizeof(struct MinHNode)); temp->left = temp->right = NULL; temp->item = item; temp->freq = freq; return temp; ) // Create min heap using given capacity struct MinH *createMinH(unsigned capacity) ( struct MinH *minHeap = (struct MinH *)malloc(sizeof(struct MinH)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHNode **)malloc(minHeap->capacity * sizeof(struct MinHNode *)); return minHeap; ) // Swap function void swapMinHNode(struct MinHNode **a, struct MinHNode **b) ( struct MinHNode *t = *a; *a = *b; *b = t; ) // Heapify void minHeapify(struct MinH *minHeap, int idx) ( int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left size && minHeap->array(left)->freq array(smallest)->freq) smallest = left; if (right size && minHeap->array(right)->freq array(smallest)->freq) smallest = right; if (smallest != idx) ( swapMinHNode(&minHeap->array(smallest), &minHeap->array(idx)); minHeapify(minHeap, smallest); ) ) // Check if size if 1 int checkSizeOne(struct MinH *minHeap) ( return (minHeap->size == 1); ) // Extract the min struct MinHNode *extractMin(struct MinH *minHeap) ( struct MinHNode *temp = minHeap->array(0); minHeap->array(0) = minHeap->array(minHeap->size - 1); --minHeap->size; minHeapify(minHeap, 0); return temp; ) // Insertion void insertMinHeap(struct MinH *minHeap, struct MinHNode *minHeapNode) ( ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq array((i - 1) / 2)->freq) ( minHeap->array(i) = minHeap->array((i - 1) / 2); i = (i - 1) / 2; ) minHeap->array(i) = minHeapNode; ) // BUild min heap void buildMinHeap(struct MinH *minHeap) ( int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i>= 0; --i) minHeapify(minHeap, i); ) int isLeaf(struct MinHNode *root) ( return !(root->left) && !(root->right); ) struct MinH *createAndBuildMinHeap(char item(), int freq(), int size) ( struct MinH *minHeap = createMinH(size); for (int i = 0; i array(i) = newNode(item(i), freq(i)); minHeap->size = size; buildMinHeap(minHeap); return minHeap; ) struct MinHNode *buildHfTree(char item(), int freq(), int size) ( struct MinHNode *left, *right, *top; struct MinH *minHeap = createAndBuildMinHeap(item, freq, size); while (!checkSizeOne(minHeap)) ( left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); ) return extractMin(minHeap); ) void printHCodes(struct MinHNode *root, int arr(), int top) ( if (root->left) ( arr(top) = 0; printHCodes(root->left, arr, top + 1); ) if (root->right) ( arr(top) = 1; printHCodes(root->right, arr, top + 1); ) if (isLeaf(root)) ( cout 

Huffman Coding Complexity

The time complexity for encoding each unique character based on its frequency is O(nlog n).

Extracting minimum frequency from the priority queue takes place 2*(n-1) times and its complexity is O(log n). Thus the overall complexity is O(nlog n).

Huffman Coding Applications

  • Huffman coding is used in conventional compression formats like GZIP, BZIP2, PKZIP, etc.
  • For text and fax transmissions.

Articulos interesantes...