Estructura de datos de cola circular

En este tutorial, aprenderá qué es una cola circular. Además, encontrará la implementación de la cola circular en C, C ++, Java y Python.

La cola circular evita el desperdicio de espacio en una implementación de cola regular utilizando matrices.

Limitación de la cola regular

Como puede ver en la imagen de arriba, después de poner y quitar la cola un poco, el tamaño de la cola se ha reducido.

Los índices 0 y 1 solo se pueden usar después de que la cola se restablece cuando todos los elementos se han eliminado de la cola.

Cómo funciona la cola circular

Circular Queue funciona mediante el proceso de incremento circular, es decir, cuando intentamos incrementar el puntero y llegamos al final de la cola, comenzamos desde el principio de la cola.

Aquí, el incremento circular se realiza mediante división de módulo con el tamaño de la cola. Es decir,

 si REAR + 1 == 5 (¡desbordamiento!), REAR = (REAR + 1)% 5 = 0 (inicio de la cola)
Representación de cola circular

Operaciones de cola circular

La cola circular funciona de la siguiente manera:

  • dos punteros DELANTERO y TRASERO
  • FRENTE rastrea el primer elemento de la cola
  • REAR rastrea los últimos elementos de la cola
  • inicialmente, establezca el valor de FRONT y REAR en -1

1. Operación de puesta en cola

  • compruebe si la cola está llena
  • para el primer elemento, establezca el valor de FRONT en 0
  • aumentar circularmente el índice TRASERO en 1 (es decir, si la parte trasera llega al final, lo siguiente sería al principio de la cola)
  • agregue el nuevo elemento en la posición señalada por REAR

2. Operación Dequeue

  • comprobar si la cola está vacía
  • devuelve el valor señalado por FRONT
  • aumentar circularmente el índice FRONT en 1
  • para el último elemento, restablezca los valores de FRONT y REAR a -1

Sin embargo, la comprobación de la cola completa tiene un nuevo caso adicional:

  • Caso 1: FRENTE = 0 && REAR == SIZE - 1
  • Caso 2: FRONT = REAR + 1

El segundo caso ocurre cuando REAR comienza desde 0 debido a un incremento circular y cuando su valor es solo 1 menos que FRONT, la cola está llena.

Operaciones Enque y Deque

Implementaciones de cola circular en Python, Java, C y C ++

La implementación de cola más común es el uso de matrices, pero también se puede implementar mediante listas.

Python Java C C +
 # Circular Queue implementation in Python class MyCircularQueue(): def __init__(self, k): self.k = k self.queue = (None) * k self.head = self.tail = -1 # Insert an element into the circular queue def enqueue(self, data): if ((self.tail + 1) % self.k == self.head): print("The circular queue is full") elif (self.head == -1): self.head = 0 self.tail = 0 self.queue(self.tail) = data else: self.tail = (self.tail + 1) % self.k self.queue(self.tail) = data # Delete an element from the circular queue def dequeue(self): if (self.head == -1): print("The circular queue is empty") elif (self.head == self.tail): temp = self.queue(self.head) self.head = -1 self.tail = -1 return temp else: temp = self.queue(self.head) self.head = (self.head + 1) % self.k return temp def printCQueue(self): if(self.head == -1): print("No element in the circular queue") elif (self.tail>= self.head): for i in range(self.head, self.tail + 1): print(self.queue(i), end=" ") print() else: for i in range(self.head, self.k): print(self.queue(i), end=" ") for i in range(0, self.tail + 1): print(self.queue(i), end=" ") print() # Your MyCircularQueue object will be instantiated and called as such: obj = MyCircularQueue(5) obj.enqueue(1) obj.enqueue(2) obj.enqueue(3) obj.enqueue(4) obj.enqueue(5) print("Initial queue") obj.printCQueue() obj.dequeue() print("After removing an element from the queue") obj.printCQueue() 
 // Circular Queue implementation in Java public class CQueue ( int SIZE = 5; // Size of Circular Queue int front, rear; int items() = new int(SIZE); CQueue() ( front = -1; rear = -1; ) // Check if the queue is full boolean isFull() ( if (front == 0 && rear == SIZE - 1) ( return true; ) if (front == rear + 1) ( return true; ) return false; ) // Check if the queue is empty boolean isEmpty() ( if (front == -1) return true; else return false; ) // Adding an element void enQueue(int element) ( if (isFull()) ( System.out.println("Queue is full"); ) else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; System.out.println("Inserted " + element); ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( System.out.println("Queue is empty"); return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) /* Q has only one element, so we reset the queue after deleting it. */ else ( front = (front + 1) % SIZE; ) return (element); ) ) void display() ( /* Function to display status of Circular Queue */ int i; if (isEmpty()) ( System.out.println("Empty Queue"); ) else ( System.out.println("Front -> " + front); System.out.println("Items -> "); for (i = front; i != rear; i = (i + 1) % SIZE) System.out.print(items(i) + " "); System.out.println(items(i)); System.out.println("Rear -> " + rear); ) ) public static void main(String() args) ( CQueue q = new CQueue(); // Fails because front = -1 q.deQueue(); q.enQueue(1); q.enQueue(2); q.enQueue(3); q.enQueue(4); q.enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 q.enQueue(6); q.display(); int elem = q.deQueue(); if (elem != -1) ( System.out.println("Deleted Element is " + elem); ) q.display(); q.enQueue(7); q.display(); // Fails to enqueue because front == rear + 1 q.enQueue(8); ) )
 // Circular Queue implementation in C #include #define SIZE 5 int items(SIZE); int front = -1, rear = -1; // Check if the queue is full int isFull() ( if ((front == rear + 1) || (front == 0 && rear == SIZE - 1)) return 1; return 0; ) // Check if the queue is empty int isEmpty() ( if (front == -1) return 1; return 0; ) // Adding an element void enQueue(int element) ( if (isFull()) printf(" Queue is full!! "); else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; printf(" Inserted -> %d", element); ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( printf(" Queue is empty !! "); return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) // Q has only one element, so we reset the // queue after dequeing it. ? else ( front = (front + 1) % SIZE; ) printf(" Deleted element -> %d ", element); return (element); ) ) // Display the queue void display() ( int i; if (isEmpty()) printf(" Empty Queue"); else ( printf(" Front -> %d ", front); printf(" Items -> "); for (i = front; i != rear; i = (i + 1) % SIZE) ( printf("%d ", items(i)); ) printf("%d ", items(i)); printf(" Rear -> %d ", rear); ) ) int main() ( // Fails because front = -1 deQueue(); enQueue(1); enQueue(2); enQueue(3); enQueue(4); enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 enQueue(6); display(); deQueue(); display(); enQueue(7); display(); // Fails to enqueue because front == rear + 1 enQueue(8); return 0; )
 // Circular Queue implementation in C++ #include #define SIZE 5 /* Size of Circular Queue */ using namespace std; class Queue ( private: int items(SIZE), front, rear; public: Queue() ( front = -1; rear = -1; ) // Check if the queue is full bool isFull() ( if (front == 0 && rear == SIZE - 1) ( return true; ) if (front == rear + 1) ( return true; ) return false; ) // Check if the queue is empty bool isEmpty() ( if (front == -1) return true; else return false; ) // Adding an element void enQueue(int element) ( if (isFull()) ( cout << "Queue is full"; ) else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; cout << endl << "Inserted " << element << endl; ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( cout << "Queue is empty" << endl; return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) // Q has only one element, // so we reset the queue after deleting it. else ( front = (front + 1) % SIZE; ) return (element); ) ) void display() ( // Function to display status of Circular Queue int i; if (isEmpty()) ( cout << endl << "Empty Queue" << endl; ) else ( cout < " << front; cout << endl < "; for (i = front; i != rear; i = (i + 1) % SIZE) cout << items(i); cout << items(i); cout << endl < " << rear; ) ) ); int main() ( Queue q; // Fails because front = -1 q.deQueue(); q.enQueue(1); q.enQueue(2); q.enQueue(3); q.enQueue(4); q.enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 q.enQueue(6); q.display(); int elem = q.deQueue(); if (elem != -1) cout << endl << "Deleted Element is " << elem; q.display(); q.enQueue(7); q.display(); // Fails to enqueue because front == rear + 1 q.enQueue(8); return 0; )

Análisis de complejidad de cola circular

La complejidad de las operaciones de poner en cola y sacar de cola de una cola circular es O (1) para (implementaciones de matriz).

Aplicaciones de la cola circular

  • Programación de CPU
  • Gestión de la memoria
  • La gestión del tráfico

Articulos interesantes...