Algoritmo de Bellman Ford

El algoritmo de Bellman Ford nos ayuda a encontrar el camino más corto desde un vértice a todos los demás vértices de un gráfico ponderado.

Es similar al algoritmo de Dijkstra pero puede funcionar con gráficos en los que los bordes pueden tener pesos negativos.

¿Por qué uno tendría aristas con pesos negativos en la vida real?

Los bordes de peso negativos pueden parecer inútiles al principio, pero pueden explicar muchos fenómenos como el flujo de caja, el calor liberado / absorbido en una reacción química, etc.

Por ejemplo, si hay diferentes formas de llegar de un químico A a otro químico B, cada método tendrá sub-reacciones que involucren tanto la disipación como la absorción de calor.

Si queremos encontrar el conjunto de reacciones donde se requiere una energía mínima, entonces tendremos que poder factorizar la absorción de calor como pesos negativos y la disipación de calor como pesos positivos.

¿Por qué debemos tener cuidado con los pesos negativos?

Los bordes de peso negativo pueden crear ciclos de peso negativos, es decir, un ciclo que reducirá la distancia total de la trayectoria volviendo al mismo punto.

Los ciclos de peso negativos pueden dar un resultado incorrecto al intentar encontrar el camino más corto.

Los algoritmos de ruta más corta, como el algoritmo de Dijkstra, que no pueden detectar dicho ciclo, pueden dar un resultado incorrecto porque pueden pasar por un ciclo de peso negativo y reducir la longitud de la ruta.

Cómo funciona el algoritmo de Bellman Ford

El algoritmo de Bellman Ford funciona sobreestimando la longitud de la ruta desde el vértice inicial hasta todos los demás vértices. Luego, relaja iterativamente esas estimaciones al encontrar nuevos caminos que son más cortos que los caminos previamente sobrestimados.

Al hacer esto repetidamente para todos los vértices, podemos garantizar que el resultado esté optimizado.

Paso 1 para el algoritmo de Bellman Ford Paso 2 para el algoritmo de Bellman Ford Paso 3 para el algoritmo de Bellman Ford Paso 4 para el algoritmo de Bellman Ford Paso 5 para el algoritmo de Bellman Ford Paso 6 para el algoritmo de Bellman Ford

Bellman Ford Pseudocódigo

Necesitamos mantener la distancia del camino de cada vértice. Podemos almacenar eso en una matriz de tamaño v, donde v es el número de vértices.

También queremos poder obtener el camino más corto, no solo conocer la longitud del camino más corto. Para ello, asignamos cada vértice al vértice que actualizó por última vez su longitud de ruta.

Una vez que el algoritmo termina, podemos retroceder desde el vértice de destino al vértice de origen para encontrar la ruta.

 función bellmanFord (G, S) para cada vértice V en G distancia (V) <- infinito anterior (V) <- NULL distancia (S) <- 0 para cada vértice V en G para cada borde (U, V) en G tempDistance <- distancia (U) + edge_weight (U, V) si tempDistance <distancia (V) distancia (V) <- tempDistance anterior (V) <- U para cada borde (U, V) en G If distancia (U) + edge_weight (U, V) <distancia (V) Error: Ciclo negativo Existe distancia de retorno (), anterior ()

Bellman Ford contra Dijkstra

El algoritmo de Bellman Ford y el algoritmo de Dijkstra son muy similares en estructura. Mientras que Dijkstra mira solo a los vecinos inmediatos de un vértice, Bellman pasa por cada borde en cada iteración.

Algoritmo de Dijkstra vs Bellman Ford

Ejemplos de Python, Java y C / C ++

Python Java C C ++
 # Bellman Ford Algorithm in Python class Graph: def __init__(self, vertices): self.V = vertices # Total number of vertices in the graph self.graph = () # Array of edges # Add edges def add_edge(self, s, d, w): self.graph.append((s, d, w)) # Print the solution def print_solution(self, dist): print("Vertex Distance from Source") for i in range(self.V): print("(0) (1)".format(i, dist(i))) def bellman_ford(self, src): # Step 1: fill the distance array and predecessor array dist = (float("Inf")) * self.V # Mark the source vertex dist(src) = 0 # Step 2: relax edges |V| - 1 times for _ in range(self.V - 1): for s, d, w in self.graph: if dist(s) != float("Inf") and dist(s) + w < dist(d): dist(d) = dist(s) + w # Step 3: detect negative cycle # if value changes then we have a negative cycle in the graph # and we cannot find the shortest distances for s, d, w in self.graph: if dist(s) != float("Inf") and dist(s) + w < dist(d): print("Graph contains negative weight cycle") return # No negative weight cycle found! # Print the distance and predecessor array self.print_solution(dist) g = Graph(5) g.add_edge(0, 1, 5) g.add_edge(0, 2, 4) g.add_edge(1, 3, 3) g.add_edge(2, 1, 6) g.add_edge(3, 2, 2) g.bellman_ford(0)
 // Bellman Ford Algorithm in Java class CreateGraph ( // CreateGraph - it consists of edges class CreateEdge ( int s, d, w; CreateEdge() ( s = d = w = 0; ) ); int V, E; CreateEdge edge(); // Creates a graph with V vertices and E edges CreateGraph(int v, int e) ( V = v; E = e; edge = new CreateEdge(e); for (int i = 0; i < e; ++i) edge(i) = new CreateEdge(); ) void BellmanFord(CreateGraph graph, int s) ( int V = graph.V, E = graph.E; int dist() = new int(V); // Step 1: fill the distance array and predecessor array for (int i = 0; i < V; ++i) dist(i) = Integer.MAX_VALUE; // Mark the source vertex dist(s) = 0; // Step 2: relax edges |V| - 1 times for (int i = 1; i < V; ++i) ( for (int j = 0; j < E; ++j) ( // Get the edge data int u = graph.edge(j).s; int v = graph.edge(j).d; int w = graph.edge(j).w; if (dist(u) != Integer.MAX_VALUE && dist(u) + w < dist(v)) dist(v) = dist(u) + w; ) ) // Step 3: detect negative cycle // if value changes then we have a negative cycle in the graph // and we cannot find the shortest distances for (int j = 0; j < E; ++j) ( int u = graph.edge(j).s; int v = graph.edge(j).d; int w = graph.edge(j).w; if (dist(u) != Integer.MAX_VALUE && dist(u) + w < dist(v)) ( System.out.println("CreateGraph contains negative w cycle"); return; ) ) // No negative w cycle found! // Print the distance and predecessor array printSolution(dist, V); ) // Print the solution void printSolution(int dist(), int V) ( System.out.println("Vertex Distance from Source"); for (int i = 0; i 1 graph.edge(0).s = 0; graph.edge(0).d = 1; graph.edge(0).w = 5; // edge 0 --> 2 graph.edge(1).s = 0; graph.edge(1).d = 2; graph.edge(1).w = 4; // edge 1 --> 3 graph.edge(2).s = 1; graph.edge(2).d = 3; graph.edge(2).w = 3; // edge 2 --> 1 graph.edge(3).s = 2; graph.edge(3).d = 1; graph.edge(3).w = 6; // edge 3 --> 2 graph.edge(4).s = 3; graph.edge(4).d = 2; graph.edge(4).w = 2; graph.BellmanFord(graph, 0); // 0 is the source vertex ) )
 // Bellman Ford Algorithm in C #include #include #define INFINITY 99999 //struct for the edges of the graph struct Edge ( int u; //start vertex of the edge int v; //end vertex of the edge int w; //weight of the edge (u,v) ); //Graph - it consists of edges struct Graph ( int V; //total number of vertices in the graph int E; //total number of edges in the graph struct Edge *edge; //array of edges ); void bellmanford(struct Graph *g, int source); void display(int arr(), int size); int main(void) ( //create graph struct Graph *g = (struct Graph *)malloc(sizeof(struct Graph)); g->V = 4; //total vertices g->E = 5; //total edges //array of edges for graph g->edge = (struct Edge *)malloc(g->E * sizeof(struct Edge)); //------- adding the edges of the graph /* edge(u, v) where u = start vertex of the edge (u,v) v = end vertex of the edge (u,v) w is the weight of the edge (u,v) */ //edge 0 --> 1 g->edge(0).u = 0; g->edge(0).v = 1; g->edge(0).w = 5; //edge 0 --> 2 g->edge(1).u = 0; g->edge(1).v = 2; g->edge(1).w = 4; //edge 1 --> 3 g->edge(2).u = 1; g->edge(2).v = 3; g->edge(2).w = 3; //edge 2 --> 1 g->edge(3).u = 2; g->edge(3).v = 1; g->edge(3).w = 6; //edge 3 --> 2 g->edge(4).u = 3; g->edge(4).v = 2; g->edge(4).w = 2; bellmanford(g, 0); //0 is the source vertex return 0; ) void bellmanford(struct Graph *g, int source) ( //variables int i, j, u, v, w; //total vertex in the graph g int tV = g->V; //total edge in the graph g int tE = g->E; //distance array //size equal to the number of vertices of the graph g int d(tV); //predecessor array //size equal to the number of vertices of the graph g int p(tV); //step 1: fill the distance array and predecessor array for (i = 0; i < tV; i++) ( d(i) = INFINITY; p(i) = 0; ) //mark the source vertex d(source) = 0; //step 2: relax edges |V| - 1 times for (i = 1; i <= tV - 1; i++) ( for (j = 0; j edge(j).u; v = g->edge(j).v; w = g->edge(j).w; if (d(u) != INFINITY && d(v)> d(u) + w) ( d(v) = d(u) + w; p(v) = u; ) ) ) //step 3: detect negative cycle //if value changes then we have a negative cycle in the graph //and we cannot find the shortest distances for (i = 0; i edge(i).u; v = g->edge(i).v; w = g->edge(i).w; if (d(u) != INFINITY && d(v)> d(u) + w) ( printf("Negative weight cycle detected!"); return; ) ) //No negative weight cycle found! //print the distance and predecessor array printf("Distance array: "); display(d, tV); printf("Predecessor array: "); display(p, tV); ) void display(int arr(), int size) ( int i; for (i = 0; i < size; i++) ( printf("%d ", arr(i)); ) printf(""); )
 // Bellman Ford Algorithm in C++ #include // Struct for the edges of the graph struct Edge ( int u; //start vertex of the edge int v; //end vertex of the edge int w; //w of the edge (u,v) ); // Graph - it consists of edges struct Graph ( int V; // Total number of vertices in the graph int E; // Total number of edges in the graph struct Edge* edge; // Array of edges ); // Creates a graph with V vertices and E edges struct Graph* createGraph(int V, int E) ( struct Graph* graph = new Graph; graph->V = V; // Total Vertices graph->E = E; // Total edges // Array of edges for graph graph->edge = new Edge(E); return graph; ) // Printing the solution void printArr(int arr(), int size) ( int i; for (i = 0; i V; int E = graph->E; int dist(V); // Step 1: fill the distance array and predecessor array for (int i = 0; i < V; i++) dist(i) = INT_MAX; // Mark the source vertex dist(u) = 0; // Step 2: relax edges |V| - 1 times for (int i = 1; i <= V - 1; i++) ( for (int j = 0; j edge(j).u; int v = graph->edge(j).v; int w = graph->edge(j).w; if (dist(u) != INT_MAX && dist(u) + w < dist(v)) dist(v) = dist(u) + w; ) ) // Step 3: detect negative cycle // if value changes then we have a negative cycle in the graph // and we cannot find the shortest distances for (int i = 0; i edge(i).u; int v = graph->edge(i).v; int w = graph->edge(i).w; if (dist(u) != INT_MAX && dist(u) + w 1 graph->edge(0).u = 0; graph->edge(0).v = 1; graph->edge(0).w = 5; //edge 0 --> 2 graph->edge(1).u = 0; graph->edge(1).v = 2; graph->edge(1).w = 4; //edge 1 --> 3 graph->edge(2).u = 1; graph->edge(2).v = 3; graph->edge(2).w = 3; //edge 2 --> 1 graph->edge(3).u = 2; graph->edge(3).v = 1; graph->edge(3).w = 6; //edge 3 --> 2 graph->edge(4).u = 3; graph->edge(4).v = 2; graph->edge(4).w = 2; BellmanFord(graph, 0); //0 is the source vertex return 0; )

Complejidad de Bellman Ford

Complejidad del tiempo

Mejor complejidad de caso O (E)
Complejidad de casos promedio O (VE)
Peor complejidad del caso O (VE)

Complejidad espacial

Y la complejidad del espacio es O(V).

Aplicaciones de algoritmos de Bellman Ford

  1. Para calcular rutas más cortas en algoritmos de enrutamiento
  2. Por encontrar el camino más corto

Articulos interesantes...