En este tutorial, aprenderá a eliminar una clave de un árbol b. Además, encontrará ejemplos prácticos de eliminación de claves de un árbol B en C, C ++, Java y Python.
La eliminación de un elemento en un árbol B consta de tres eventos principales: buscar el nodo donde existe la clave a eliminar , eliminar la clave y equilibrar el árbol si es necesario.
Al eliminar un árbol, puede ocurrir una condición llamada subdesbordamiento . El subdesbordamiento ocurre cuando un nodo contiene menos de la cantidad mínima de claves que debería contener.
Los términos a entender antes de estudiar la operación de borrado son:
- Predecesor de orden
La clave más grande en el hijo izquierdo de un nodo se llama su predecesor de orden. - Sucesor de orden
La clave más pequeña del hijo derecho de un nodo se denomina sucesora de orden.
Operación de eliminación
Antes de seguir los pasos a continuación, es necesario conocer estos datos sobre un árbol B de grado m .
- Un nodo puede tener un máximo de m hijos. (es decir, 3)
- Un nodo puede contener un máximo de
m - 1
claves. (es decir, 2) - Un nodo debe tener un mínimo de
⌈m/2⌉
hijos. (es decir, 2) - Un nodo (excepto el nodo raíz) debe contener un mínimo de
⌈m/2⌉ - 1
claves. (es decir, 1)
Hay tres casos principales para la operación de eliminación en un árbol B.
Caso I
La clave a eliminar está en la hoja. Hay dos casos para ello.
- La eliminación de la clave no viola la propiedad del número mínimo de claves que debe tener un nodo.
En el árbol de abajo, eliminar 32 no viola las propiedades anteriores.Eliminar una clave de hoja (32) del árbol B
- La eliminación de la clave viola la propiedad del número mínimo de claves que debe tener un nodo. En este caso, tomamos prestada una clave de su nodo hermano vecino inmediato en el orden de izquierda a derecha.
Primero, visite al hermano izquierdo inmediato. Si el nodo hermano izquierdo tiene más de un número mínimo de claves, entonces tome prestada una clave de este nodo.
De lo contrario, marque para pedir prestado del nodo hermano derecho inmediato.
En el árbol siguiente, eliminar 31 da como resultado la condición anterior. Tomemos prestada una clave del nodo hermano izquierdo.Eliminación de una clave de hoja (31) Si ambos nodos hermanos inmediatos ya tienen un número mínimo de claves, combine el nodo con el nodo hermano izquierdo o el nodo hermano derecho. Esta fusión se realiza a través del nodo principal.
Eliminar 30 resultados en el caso anterior.Eliminar una llave de hoja (30)
Caso II
Si la clave a eliminar se encuentra en el nodo interno, ocurren los siguientes casos.
- El nodo interno, que se elimina, se reemplaza por un predecesor en orden si el hijo izquierdo tiene más del número mínimo de claves.
Eliminar un nodo interno (33)
- El nodo interno, que se elimina, se reemplaza por un sucesor en orden si el hijo correcto tiene más de la cantidad mínima de claves.
- Si alguno de los niños tiene exactamente un número mínimo de llaves, combine los niños izquierdo y derecho.
Eliminación de un nodo interno (30) Después de la fusión, si el nodo principal tiene menos del número mínimo de claves, busque los hermanos como en el Caso I.
Caso III
En este caso, la altura del árbol se reduce. Si la clave de destino se encuentra en un nodo interno, y la eliminación de la clave conduce a un menor número de claves en el nodo (es decir, menos del mínimo requerido), busque el predecesor en orden y el sucesor en orden. Si ambos niños contienen un número mínimo de llaves, no se podrá realizar el préstamo. Esto conduce al caso II (3), es decir, la fusión de los niños.
Nuevamente, busque al hermano para que le preste una llave. Pero, si el hermano también tiene solo un número mínimo de claves, combine el nodo con el hermano junto con el padre. Organice a los niños en consecuencia (orden creciente).

Ejemplos de Python, Java y C / C ++
Python Java C C ++ # Deleting a key on a B-tree in Python # Btree node class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = () self.child = () class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # Insert a key def insert(self, k): root = self.root if len(root.keys) == (2 * self.t) - 1: temp = BTreeNode() self.root = temp temp.child.insert(0, root) self.split_child(temp, 0) self.insert_non_full(temp, k) else: self.insert_non_full(root, k) # Insert non full def insert_non_full(self, x, k): i = len(x.keys) - 1 if x.leaf: x.keys.append((None, None)) while i>= 0 and k(0) = 0 and k(0) x.keys(i)(0): i += 1 self.insert_non_full(x.child(i), k) # Split the child def split_child(self, x, i): t = self.t y = x.child(i) z = BTreeNode(y.leaf) x.child.insert(i + 1, z) x.keys.insert(i, y.keys(t - 1)) z.keys = y.keys(t: (2 * t) - 1) y.keys = y.keys(0: t - 1) if not y.leaf: z.child = y.child(t: 2 * t) y.child = y.child(0: t - 1) # Delete a node def delete(self, x, k): t = self.t i = 0 while i x.keys(i)(0): i += 1 if x.leaf: if i < len(x.keys) and x.keys(i)(0) == k(0): x.keys.pop(i) return return if i = t: self.delete(x.child(i), k) else: if i != 0 and i + 2 = t: self.delete_sibling(x, i, i - 1) elif len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i == 0: if len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i + 1 == len(x.child): if len(x.child(i - 1).keys)>= t: self.delete_sibling(x, i, i - 1) else: self.delete_merge(x, i, i - 1) self.delete(x.child(i), k) # Delete internal node def delete_internal_node(self, x, k, i): t = self.t if x.leaf: if x.keys(i)(0) == k(0): x.keys.pop(i) return return if len(x.child(i).keys)>= t: x.keys(i) = self.delete_predecessor(x.child(i)) return elif len(x.child(i + 1).keys)>= t: x.keys(i) = self.delete_successor(x.child(i + 1)) return else: self.delete_merge(x, i, i + 1) self.delete_internal_node(x.child(i), k, self.t - 1) # Delete the predecessor def delete_predecessor(self, x): if x.leaf: return x.pop() n = len(x.keys) - 1 if len(x.child(n).keys)>= self.t: self.delete_sibling(x, n + 1, n) else: self.delete_merge(x, n, n + 1) self.delete_predecessor(x.child(n)) # Delete the successor def delete_successor(self, x): if x.leaf: return x.keys.pop(0) if len(x.child(1).keys)>= self.t: self.delete_sibling(x, 0, 1) else: self.delete_merge(x, 0, 1) self.delete_successor(x.child(0)) # Delete resolution def delete_merge(self, x, i, j): cnode = x.child(i) if j> i: rsnode = x.child(j) cnode.keys.append(x.keys(i)) for k in range(len(rsnode.keys)): cnode.keys.append(rsnode.keys(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child.pop()) new = cnode x.keys.pop(i) x.child.pop(j) else: lsnode = x.child(j) lsnode.keys.append(x.keys(j)) for i in range(len(cnode.keys)): lsnode.keys.append(cnode.keys(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child.pop()) new = lsnode x.keys.pop(j) x.child.pop(i) if x == self.root and len(x.keys) == 0: self.root = new # Delete the sibling def delete_sibling(self, x, i, j): cnode = x.child(i) if i 0: cnode.child.append(rsnode.child(0)) rsnode.child.pop(0) rsnode.keys.pop(0) else: lsnode = x.child(j) cnode.keys.insert(0, x.keys(i - 1)) x.keys(i - 1) = lsnode.keys.pop() if len(lsnode.child)> 0: cnode.child.insert(0, lsnode.child.pop()) # Print the tree def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child)> 0: for i in x.child: self.print_tree(i, l) B = BTree(3) for i in range(10): B.insert((i, 2 * i)) B.print_tree(B.root) B.delete(B.root, (8,)) print("") B.print_tree(B.root)
// Inserting a key on a B-tree in Java import java.util.Stack; public class BTree ( private int T; public class Node ( int n; int key() = new int(2 * T - 1); Node child() = new Node(2 * T); boolean leaf = true; public int Find(int k) ( for (int i = 0; i < this.n; i++) ( if (this.key(i) == k) ( return i; ) ) return -1; ); ) public BTree(int t) ( T = t; root = new Node(); root.n = 0; root.leaf = true; ) private Node root; // Search the key private Node Search(Node x, int key) ( int i = 0; if (x == null) return x; for (i = 0; i < x.n; i++) ( if (key < x.key(i)) ( break; ) if (key == x.key(i)) ( return x; ) ) if (x.leaf) ( return null; ) else ( return Search(x.child(i), key); ) ) // Split function private void Split(Node x, int pos, Node y) ( Node z = new Node(); z.leaf = y.leaf; z.n = T - 1; for (int j = 0; j < T - 1; j++) ( z.key(j) = y.key(j + T); ) if (!y.leaf) ( for (int j = 0; j = pos + 1; j--) ( x.child(j + 1) = x.child(j); ) x.child(pos + 1) = z; for (int j = x.n - 1; j>= pos; j--) ( x.key(j + 1) = x.key(j); ) x.key(pos) = y.key(T - 1); x.n = x.n + 1; ) // Insert the key public void Insert(final int key) ( Node r = root; if (r.n == 2 * T - 1) ( Node s = new Node(); root = s; s.leaf = false; s.n = 0; s.child(0) = r; Split(s, 0, r); _Insert(s, key); ) else ( _Insert(r, key); ) ) // Insert the node final private void _Insert(Node x, int k) ( if (x.leaf) ( int i = 0; for (i = x.n - 1; i>= 0 && k = 0 && k x.key(i)) ( i++; ) ) _Insert(x.child(i), k); ) ) public void Show() ( Show(root); ) private void Remove(Node x, int key) ( int pos = x.Find(key); if (pos != -1) ( if (x.leaf) ( int i = 0; for (i = 0; i < x.n && x.key(i) != key; i++) ( ) ; for (; i = T) ( for (;;) ( if (pred.leaf) ( System.out.println(pred.n); predKey = pred.key(pred.n - 1); break; ) else ( pred = pred.child(pred.n); ) ) Remove(pred, predKey); x.key(pos) = predKey; return; ) Node nextNode = x.child(pos + 1); if (nextNode.n>= T) ( int nextKey = nextNode.key(0); if (!nextNode.leaf) ( nextNode = nextNode.child(0); for (;;) ( if (nextNode.leaf) ( nextKey = nextNode.key(nextNode.n - 1); break; ) else ( nextNode = nextNode.child(nextNode.n); ) ) ) Remove(nextNode, nextKey); x.key(pos) = nextKey; return; ) int temp = pred.n + 1; pred.key(pred.n++) = x.key(pos); for (int i = 0, j = pred.n; i < nextNode.n; i++) ( pred.key(j++) = nextNode.key(i); pred.n++; ) for (int i = 0; i < nextNode.n + 1; i++) ( pred.child(temp++) = nextNode.child(i); ) x.child(pos) = pred; for (int i = pos; i < x.n; i++) ( if (i != 2 * T - 2) ( x.key(i) = x.key(i + 1); ) ) for (int i = pos + 1; i < x.n + 1; i++) ( if (i != 2 * T - 1) ( x.child(i) = x.child(i + 1); ) ) x.n--; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(pred, key); return; ) ) else ( for (pos = 0; pos key) ( break; ) ) Node tmp = x.child(pos); if (tmp.n>= T) ( Remove(tmp, key); return; ) if (true) ( Node nb = null; int devider = -1; if (pos != x.n && x.child(pos + 1).n>= T) ( devider = x.key(pos); nb = x.child(pos + 1); x.key(pos) = nb.key(0); tmp.key(tmp.n++) = devider; tmp.child(tmp.n) = nb.child(0); for (int i = 1; i < nb.n; i++) ( nb.key(i - 1) = nb.key(i); ) for (int i = 1; i = T) ( devider = x.key(pos - 1); nb = x.child(pos - 1); x.key(pos - 1) = nb.key(nb.n - 1); Node child = nb.child(nb.n); nb.n--; for (int i = tmp.n; i> 0; i--) ( tmp.key(i) = tmp.key(i - 1); ) tmp.key(0) = devider; for (int i = tmp.n + 1; i> 0; i--) ( tmp.child(i) = tmp.child(i - 1); ) tmp.child(0) = child; tmp.n++; Remove(tmp, key); return; ) else ( Node lt = null; Node rt = null; boolean last = false; if (pos != x.n) ( devider = x.key(pos); lt = x.child(pos); rt = x.child(pos + 1); ) else ( devider = x.key(pos - 1); rt = x.child(pos); lt = x.child(pos - 1); last = true; pos--; ) for (int i = pos; i < x.n - 1; i++) ( x.key(i) = x.key(i + 1); ) for (int i = pos + 1; i < x.n; i++) ( x.child(i) = x.child(i + 1); ) x.n--; lt.key(lt.n++) = devider; for (int i = 0, j = lt.n; i < rt.n + 1; i++, j++) ( if (i < rt.n) ( lt.key(j) = rt.key(i); ) lt.child(j) = rt.child(i); ) lt.n += rt.n; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(lt, key); return; ) ) ) ) public void Remove(int key) ( Node x = Search(root, key); if (x == null) ( return; ) Remove(root, key); ) public void Task(int a, int b) ( Stack st = new Stack(); FindKeys(a, b, root, st); while (st.isEmpty() == false) ( this.Remove(root, st.pop()); ) ) private void FindKeys(int a, int b, Node x, Stack st) ( int i = 0; for (i = 0; i < x.n && x.key(i) a) ( st.push(x.key(i)); ) ) if (!x.leaf) ( for (int j = 0; j < i + 1; j++) ( FindKeys(a, b, x.child(j), st); ) ) ) public boolean Contain(int k) ( if (this.Search(root, k) != null) ( return true; ) else ( return false; ) ) // Show the node private void Show(Node x) ( assert (x == null); for (int i = 0; i < x.n; i++) ( System.out.print(x.key(i) + " "); ) if (!x.leaf) ( for (int i = 0; i < x.n + 1; i++) ( Show(x.child(i)); ) ) ) public static void main(String() args) ( BTree b = new BTree(3); b.Insert(8); b.Insert(9); b.Insert(10); b.Insert(11); b.Insert(15); b.Insert(20); b.Insert(17); b.Show(); b.Remove(10); System.out.println(); b.Show(); ) )
// Deleting a key from a B-tree in C #include #include #define MAX 3 #define MIN 2 struct BTreeNode ( int item(MAX + 1), count; struct BTreeNode *linker(MAX + 1); ); struct BTreeNode *root; // Node creation struct BTreeNode *createNode(int item, struct BTreeNode *child) ( struct BTreeNode *newNode; newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); newNode->item(1) = item; newNode->count = 1; newNode->linker(0) = root; newNode->linker(1) = child; return newNode; ) // Add value to the node void addValToNode(int item, int pos, struct BTreeNode *node, struct BTreeNode *child) ( int j = node->count; while (j> pos) ( node->item(j + 1) = node->item(j); node->linker(j + 1) = node->linker(j); j--; ) node->item(j + 1) = item; node->linker(j + 1) = child; node->count++; ) // Split the node void splitNode(int item, int *pval, int pos, struct BTreeNode *node, struct BTreeNode *child, struct BTreeNode **newNode) ( int median, j; if (pos> MIN) median = MIN + 1; else median = MIN; *newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); j = median + 1; while (j item(j - median) = node->item(j); (*newNode)->linker(j - median) = node->linker(j); j++; ) node->count = median; (*newNode)->count = MAX - median; if (pos item(node->count); (*newNode)->linker(0) = node->linker(node->count); node->count--; ) // Set the value in the node int setValueInNode(int item, int *pval, struct BTreeNode *node, struct BTreeNode **child) ( int pos; if (!node) ( *pval = item; *child = NULL; return 1; ) if (item item(1)) ( pos = 0; ) else ( for (pos = node->count; (item item(pos) && pos> 1); pos--) ; if (item == node->item(pos)) ( printf("Duplicates not allowed"); return 0; ) ) if (setValueInNode(item, pval, node->linker(pos), child)) ( if (node->count linker(pos); for (; dummy->linker(0) != NULL;) dummy = dummy->linker(0); myNode->item(pos) = dummy->item(1); ) // Remove the value void removeVal(struct BTreeNode *myNode, int pos) ( int i = pos + 1; while (i count) ( myNode->item(i - 1) = myNode->item(i); myNode->linker(i - 1) = myNode->linker(i); i++; ) myNode->count--; ) // Do right shift void rightShift(struct BTreeNode *myNode, int pos) ( struct BTreeNode *x = myNode->linker(pos); int j = x->count; while (j> 0) ( x->item(j + 1) = x->item(j); x->linker(j + 1) = x->linker(j); ) x->item(1) = myNode->item(pos); x->linker(1) = x->linker(0); x->count++; x = myNode->linker(pos - 1); myNode->item(pos) = x->item(x->count); myNode->linker(pos) = x->linker(x->count); x->count--; return; ) // Do left shift void leftShift(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x = myNode->linker(pos - 1); x->count++; x->item(x->count) = myNode->item(pos); x->linker(x->count) = myNode->linker(pos)->linker(0); x = myNode->linker(pos); myNode->item(pos) = x->item(1); x->linker(0) = x->linker(1); x->count--; while (j count) ( x->item(j) = x->item(j + 1); x->linker(j) = x->linker(j + 1); j++; ) return; ) // Merge the nodes void mergeNodes(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x1 = myNode->linker(pos), *x2 = myNode->linker(pos - 1); x2->count++; x2->item(x2->count) = myNode->item(pos); x2->linker(x2->count) = myNode->linker(0); while (j count) ( x2->count++; x2->item(x2->count) = x1->item(j); x2->linker(x2->count) = x1->linker(j); j++; ) j = pos; while (j count) ( myNode->item(j) = myNode->item(j + 1); myNode->linker(j) = myNode->linker(j + 1); j++; ) myNode->count--; free(x1); ) // Adjust the node void adjustNode(struct BTreeNode *myNode, int pos) ( if (!pos) ( if (myNode->linker(1)->count> MIN) ( leftShift(myNode, 1); ) else ( mergeNodes(myNode, 1); ) ) else ( if (myNode->count != pos) ( if (myNode->linker(pos - 1)->count> MIN) ( rightShift(myNode, pos); ) else ( if (myNode->linker(pos + 1)->count> MIN) ( leftShift(myNode, pos + 1); ) else ( mergeNodes(myNode, pos); ) ) ) else ( if (myNode->linker(pos - 1)->count> MIN) rightShift(myNode, pos); else mergeNodes(myNode, pos); ) ) ) // Delete a value from the node int delValFromNode(int item, struct BTreeNode *myNode) ( int pos, flag = 0; if (myNode) ( if (item item(1)) ( pos = 0; flag = 0; ) else ( for (pos = myNode->count; (item item(pos) && pos> 1); pos--) ; if (item == myNode->item(pos)) ( flag = 1; ) else ( flag = 0; ) ) if (flag) ( if (myNode->linker(pos - 1)) ( copySuccessor(myNode, pos); flag = delValFromNode(myNode->item(pos), myNode->linker(pos)); if (flag == 0) ( printf("Given data is not present in B-Tree"); ) ) else ( removeVal(myNode, pos); ) ) else ( flag = delValFromNode(item, myNode->linker(pos)); ) if (myNode->linker(pos)) ( if (myNode->linker(pos)->count count == 0) ( tmp = myNode; myNode = myNode->linker(0); free(tmp); ) ) root = myNode; return; ) void searching(int item, int *pos, struct BTreeNode *myNode) ( if (!myNode) ( return; ) if (item item(1)) ( *pos = 0; ) else ( for (*pos = myNode->count; (item item(*pos) && *pos> 1); (*pos)--) ; if (item == myNode->item(*pos)) ( printf("%d present in B-tree", item); return; ) ) searching(item, pos, myNode->linker(*pos)); return; ) void traversal(struct BTreeNode *myNode) ( int i; if (myNode) ( for (i = 0; i count; i++) ( traversal(myNode->linker(i)); printf("%d ", myNode->item(i + 1)); ) traversal(myNode->linker(i)); ) ) int main() ( int item, ch; insertion(8); insertion(9); insertion(10); insertion(11); insertion(15); insertion(16); insertion(17); insertion(18); insertion(20); insertion(23); traversal(root); delete (20, root); printf(""); traversal(root); )
// Deleting a key from a B-tree in C++ #include using namespace std; class BTreeNode ( int *keys; int t; BTreeNode **C; int n; bool leaf; public: BTreeNode(int _t, bool _leaf); void traverse(); int findKey(int k); void insertNonFull(int k); void splitChild(int i, BTreeNode *y); void deletion(int k); void removeFromLeaf(int idx); void removeFromNonLeaf(int idx); int getPredecessor(int idx); int getSuccessor(int idx); void fill(int idx); void borrowFromPrev(int idx); void borrowFromNext(int idx); void merge(int idx); friend class BTree; ); class BTree ( BTreeNode *root; int t; public: BTree(int _t) ( root = NULL; t = _t; ) void traverse() ( if (root != NULL) root->traverse(); ) void insertion(int k); void deletion(int k); ); // B tree node BTreeNode::BTreeNode(int t1, bool leaf1) ( t = t1; leaf = leaf1; keys = new int(2 * t - 1); C = new BTreeNode *(2 * t); n = 0; ) // Find the key int BTreeNode::findKey(int k) ( int idx = 0; while (idx < n && keys(idx) < k) ++idx; return idx; ) // Deletion operation void BTreeNode::deletion(int k) ( int idx = findKey(k); if (idx < n && keys(idx) == k) ( if (leaf) removeFromLeaf(idx); else removeFromNonLeaf(idx); ) else ( if (leaf) ( cout << "The key " << k deletion(k); else C(idx)->deletion(k); ) return; ) // Remove from the leaf void BTreeNode::removeFromLeaf(int idx) ( for (int i = idx + 1; i n>= t) ( int pred = getPredecessor(idx); keys(idx) = pred; C(idx)->deletion(pred); ) else if (C(idx + 1)->n>= t) ( int succ = getSuccessor(idx); keys(idx) = succ; C(idx + 1)->deletion(succ); ) else ( merge(idx); C(idx)->deletion(k); ) return; ) int BTreeNode::getPredecessor(int idx) ( BTreeNode *cur = C(idx); while (!cur->leaf) cur = cur->C(cur->n); return cur->keys(cur->n - 1); ) int BTreeNode::getSuccessor(int idx) ( BTreeNode *cur = C(idx + 1); while (!cur->leaf) cur = cur->C(0); return cur->keys(0); ) void BTreeNode::fill(int idx) ( if (idx != 0 && C(idx - 1)->n>= t) borrowFromPrev(idx); else if (idx != n && C(idx + 1)->n>= t) borrowFromNext(idx); else ( if (idx != n) merge(idx); else merge(idx - 1); ) return; ) // Borrow from previous void BTreeNode::borrowFromPrev(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx - 1); for (int i = child->n - 1; i>= 0; --i) child->keys(i + 1) = child->keys(i); if (!child->leaf) ( for (int i = child->n; i>= 0; --i) child->C(i + 1) = child->C(i); ) child->keys(0) = keys(idx - 1); if (!child->leaf) child->C(0) = sibling->C(sibling->n); keys(idx - 1) = sibling->keys(sibling->n - 1); child->n += 1; sibling->n -= 1; return; ) // Borrow from the next void BTreeNode::borrowFromNext(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys((child->n)) = keys(idx); if (!(child->leaf)) child->C((child->n) + 1) = sibling->C(0); keys(idx) = sibling->keys(0); for (int i = 1; i n; ++i) sibling->keys(i - 1) = sibling->keys(i); if (!sibling->leaf) ( for (int i = 1; i n; ++i) sibling->C(i - 1) = sibling->C(i); ) child->n += 1; sibling->n -= 1; return; ) // Merge void BTreeNode::merge(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys(t - 1) = keys(idx); for (int i = 0; i n; ++i) child->keys(i + t) = sibling->keys(i); if (!child->leaf) ( for (int i = 0; i n; ++i) child->C(i + t) = sibling->C(i); ) for (int i = idx + 1; i < n; ++i) keys(i - 1) = keys(i); for (int i = idx + 2; i n += sibling->n + 1; n--; delete (sibling); return; ) // Insertion operation void BTree::insertion(int k) ( if (root == NULL) ( root = new BTreeNode(t, true); root->keys(0) = k; root->n = 1; ) else ( if (root->n == 2 * t - 1) ( BTreeNode *s = new BTreeNode(t, false); s->C(0) = root; s->splitChild(0, root); int i = 0; if (s->keys(0) C(i)->insertNonFull(k); root = s; ) else root->insertNonFull(k); ) ) // Insertion non full void BTreeNode::insertNonFull(int k) ( int i = n - 1; if (leaf == true) ( while (i>= 0 && keys(i)> k) ( keys(i + 1) = keys(i); i--; ) keys(i + 1) = k; n = n + 1; ) else ( while (i>= 0 && keys(i)> k) i--; if (C(i + 1)->n == 2 * t - 1) ( splitChild(i + 1, C(i + 1)); if (keys(i + 1) insertNonFull(k); ) ) // Split child void BTreeNode::splitChild(int i, BTreeNode *y) ( BTreeNode *z = new BTreeNode(y->t, y->leaf); z->n = t - 1; for (int j = 0; j keys(j) = y->keys(j + t); if (y->leaf == false) ( for (int j = 0; j C(j) = y->C(j + t); ) y->n = t - 1; for (int j = n; j>= i + 1; j--) C(j + 1) = C(j); C(i + 1) = z; for (int j = n - 1; j>= i; j--) keys(j + 1) = keys(j); keys(i) = y->keys(t - 1); n = n + 1; ) // Traverse void BTreeNode::traverse() ( int i; for (i = 0; i traverse(); cout << " "
n == 0) ( BTreeNode *tmp = root; if (root->leaf) root = NULL; else root = root->C(0); delete tmp; ) return; ) int main() ( BTree t(3); t.insertion(8); t.insertion(9); t.insertion(10); t.insertion(11); t.insertion(15); t.insertion(16); t.insertion(17); t.insertion(18); t.insertion(20); t.insertion(23); cout << "The B-tree is: "; t.traverse(); t.deletion(20); cout << "The B-tree is: "; t.traverse(); )
Complejidad de eliminación
Mejor caso Complejidad de tiempo: Θ(log n)
Complejidad de espacio de caso promedio: Θ(n)
En el peor de los casos, complejidad espacial: Θ(n)