En este tutorial, aprenderá cómo se puede insertar un nuevo nodo en un árbol rojo-negro. Además, encontrará ejemplos prácticos de inserciones realizadas en un árbol rojo-negro en C, C ++, Java y Python.
El árbol rojo-negro es un árbol de búsqueda binario autoequilibrado en el que cada nodo contiene un bit adicional para indicar el color del nodo, ya sea rojo o negro.
Antes de leer este artículo, consulte el artículo sobre árbol rojo-negro.
Al insertar un nuevo nodo, el nuevo nodo siempre se inserta como un nodo ROJO. Después de la inserción de un nuevo nodo, si el árbol viola las propiedades del árbol rojo-negro, realizamos las siguientes operaciones.
- Recolorear
- Rotación
Algoritmo para insertar un nuevo nodo
Se siguen los siguientes pasos para insertar un nuevo elemento en un árbol rojo-negro:
- El
newNode
ser:Nuevo nodo
- Sea y la hoja (es decir
NIL
) yx
la raíz del árbol. El nuevo nodo se inserta en el siguiente árbol.Árbol inicial
- Compruebe si el árbol está vacío (es decir, si lo
x
estáNIL
). Si es así, insértelonewNode
como nodo raíz y coloréelo de negro. - De lo contrario, repita los pasos siguientes hasta
NIL
alcanzar la hoja ( ).- Comparar
newKey
conrootKey
. - Si
newKey
es mayor querootKey
, atraviesa el subárbol derecho. - De lo contrario, atraviesa el subárbol izquierdo.
Ruta que conduce al nodo donde se debe insertar newNode
- Comparar
- Asigne el padre de la hoja como padre de
newNode
. - Si
leafKey
es mayor quenewKey
, haznewNode
comorightChild
. - De lo contrario, haz
newNode
comoleftChild
.Nuevo nodo insertado
- Asignar
NULL
a la izquierda yrightChild
denewNode
. - Asignar color ROJO a
newNode
.Establezca el color del newNode rojo y asigne nulo a los hijos
- Llame al algoritmo InsertFix para mantener la propiedad del árbol rojo-negro si se viola.
¿Por qué los nodos recién insertados siempre son rojos en un árbol rojo-negro?
Esto se debe a que la inserción de un nodo rojo no viola la propiedad de profundidad de un árbol rojo-negro.
Si adjunta un nodo rojo a un nodo rojo, se infringe la regla, pero es más fácil solucionar este problema que el problema introducido al violar la propiedad de profundidad.
Algoritmo para mantener la propiedad rojo-negro después de la inserción
Este algoritmo se utiliza para mantener la propiedad de un árbol rojo-negro si la inserción de un newNode viola esta propiedad.
- Haga lo siguiente hasta que el padre de
newNode
p
sea ROJO. - Si
p
es el hijo izquierdo degrandParent
gP
denewNode
, haga lo siguiente.
Caso-I:- Si el color del hijo derecho de
gP
denewNode
es ROJO, establezca el color de ambos hijos degP
como NEGRO y el color degP
como ROJO.Cambio de color
- Asignar
gP
anewNode
.Reasignación de newNode
Case-II: - (Antes de continuar con este paso, mientras el bucle está marcado. Si no se cumplen las condiciones, el bucle se rompe).
Si nonewNode
es el hijo correcto dep
entonces, asignep
anewNode
.Asignar padre de newNode como newNode
- Girar a la izquierda
newNode
.Girar a la izquierda
Case-III: - (Antes de continuar con este paso, mientras el bucle está marcado. Si no se cumplen las condiciones, el bucle se rompe).
Establezca el color dep
NEGRO y el color degP
ROJO.Cambio de color
- Girar a la derecha
gP
.Girar a la derecha
- Si el color del hijo derecho de
- De lo contrario, haga lo siguiente.
- Si el color del hijo izquierdo de
gP
dez
es ROJO, establezca el color de ambos hijos degP
como NEGRO y el color degP
como ROJO. - Asignar
gP
anewNode
. - Porque si
newNode
es el hijo izquierdo dep
entonces, asignarp
anewNode
y derecho del GirarnewNode
. - Establezca el color de
p
NEGRO y el color degP
ROJO. - Girar a la izquierda
gP
.
- Si el color del hijo izquierdo de
- (Este paso se realiza después de salir del ciclo while.)
Establezca la raíz del árbol en NEGRO.Establecer el color de la raíz negro
El árbol final se ve así:

Ejemplos de Python, Java y C / C ++
Python Java C C ++# Implementing Red-Black Tree in Python import sys # Node creation class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1 class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # Preorder def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # Inorder def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right) # Postorder def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # Search the tree def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key < node.item: return self.search_tree_helper(node.left, key) return self.search_tree_helper(node.right, key) # Balance the tree after insertion def fix_insert(self, k): while k.parent.color == 1: if k.parent == k.parent.parent.right: u = k.parent.parent.left if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.left: k = k.parent self.right_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.left_rotate(k.parent.parent) else: u = k.parent.parent.right if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.right: k = k.parent self.left_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.right_rotate(k.parent.parent) if k == self.root: break self.root.color = 0 # Printing the tree def __print_helper(self, node, indent, last): if node != self.TNULL: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent += " " else: sys.stdout.write("L----") indent += "| " s_color = "RED" if node.color == 1 else "BLACK" print(str(node.item) + "(" + s_color + ")") self.__print_helper(node.left, indent, False) self.__print_helper(node.right, indent, True) def preorder(self): self.pre_order_helper(self.root) def inorder(self): self.in_order_helper(self.root) def postorder(self): self.post_order_helper(self.root) def searchTree(self, k): return self.search_tree_helper(self.root, k) def minimum(self, node): while node.left != self.TNULL: node = node.left return node def maximum(self, node): while node.right != self.TNULL: node = node.right return node def successor(self, x): if x.right != self.TNULL: return self.minimum(x.right) y = x.parent while y != self.TNULL and x == y.right: x = y y = y.parent return y def predecessor(self, x): if (x.left != self.TNULL): return self.maximum(x.left) y = x.parent while y != self.TNULL and x == y.left: x = y y = y.parent return y def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.TNULL: y.left.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): y = x.left x.left = y.right if y.right != self.TNULL: y.right.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.right: x.parent.right = y else: x.parent.left = y y.right = x x.parent = y def insert(self, key): node = Node(key) node.parent = None node.item = key node.left = self.TNULL node.right = self.TNULL node.color = 1 y = None x = self.root while x != self.TNULL: y = x if node.item < x.item: x = x.left else: x = x.right node.parent = y if y == None: self.root = node elif node.item < y.item: y.left = node else: y.right = node if node.parent == None: node.color = 0 return if node.parent.parent == None: return self.fix_insert(node) def get_root(self): return self.root def print_tree(self): self.__print_helper(self.root, "", True) if __name__ == "__main__": bst = RedBlackTree() bst.insert(55) bst.insert(40) bst.insert(65) bst.insert(60) bst.insert(75) bst.insert(57) bst.print_tree()
// Implementing Red-Black Tree in Java class Node ( int data; Node parent; Node left; Node right; int color; ) public class RedBlackTree ( private Node root; private Node TNULL; // Preorder private void preOrderHelper(Node node) ( if (node != TNULL) ( System.out.print(node.data + " "); preOrderHelper(node.left); preOrderHelper(node.right); ) ) // Inorder private void inOrderHelper(Node node) ( if (node != TNULL) ( inOrderHelper(node.left); System.out.print(node.data + " "); inOrderHelper(node.right); ) ) // Post order private void postOrderHelper(Node node) ( if (node != TNULL) ( postOrderHelper(node.left); postOrderHelper(node.right); System.out.print(node.data + " "); ) ) // Search the tree private Node searchTreeHelper(Node node, int key) ( if (node == TNULL || key == node.data) ( return node; ) if (key < node.data) ( return searchTreeHelper(node.left, key); ) return searchTreeHelper(node.right, key); ) // Balance the tree after deletion of a node private void fixDelete(Node x) ( Node s; while (x != root && x.color == 0) ( if (x == x.parent.left) ( s = x.parent.right; if (s.color == 1) ( s.color = 0; x.parent.color = 1; leftRotate(x.parent); s = x.parent.right; ) if (s.left.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.right.color == 0) ( s.left.color = 0; s.color = 1; rightRotate(s); s = x.parent.right; ) s.color = x.parent.color; x.parent.color = 0; s.right.color = 0; leftRotate(x.parent); x = root; ) ) else ( s = x.parent.left; if (s.color == 1) ( s.color = 0; x.parent.color = 1; rightRotate(x.parent); s = x.parent.left; ) if (s.right.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.left.color == 0) ( s.right.color = 0; s.color = 1; leftRotate(s); s = x.parent.left; ) s.color = x.parent.color; x.parent.color = 0; s.left.color = 0; rightRotate(x.parent); x = root; ) ) ) x.color = 0; ) private void rbTransplant(Node u, Node v) ( if (u.parent == null) ( root = v; ) else if (u == u.parent.left) ( u.parent.left = v; ) else ( u.parent.right = v; ) v.parent = u.parent; ) // Balance the node after insertion private void fixInsert(Node k) ( Node u; while (k.parent.color == 1) ( if (k.parent == k.parent.parent.right) ( u = k.parent.parent.left; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.left) ( k = k.parent; rightRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; leftRotate(k.parent.parent); ) ) else ( u = k.parent.parent.right; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.right) ( k = k.parent; leftRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; rightRotate(k.parent.parent); ) ) if (k == root) ( break; ) ) root.color = 0; ) private void printHelper(Node root, String indent, boolean last) ( if (root != TNULL) ( System.out.print(indent); if (last) ( System.out.print("R----"); indent += " "; ) else ( System.out.print("L----"); indent += "| "; ) String sColor = root.color == 1 ? "RED" : "BLACK"; System.out.println(root.data + "(" + sColor + ")"); printHelper(root.left, indent, false); printHelper(root.right, indent, true); ) ) public RedBlackTree() ( TNULL = new Node(); TNULL.color = 0; TNULL.left = null; TNULL.right = null; root = TNULL; ) public void preorder() ( preOrderHelper(this.root); ) public void inorder() ( inOrderHelper(this.root); ) public void postorder() ( postOrderHelper(this.root); ) public Node searchTree(int k) ( return searchTreeHelper(this.root, k); ) public Node minimum(Node node) ( while (node.left != TNULL) ( node = node.left; ) return node; ) public Node maximum(Node node) ( while (node.right != TNULL) ( node = node.right; ) return node; ) public Node successor(Node x) ( if (x.right != TNULL) ( return minimum(x.right); ) Node y = x.parent; while (y != TNULL && x == y.right) ( x = y; y = y.parent; ) return y; ) public Node predecessor(Node x) ( if (x.left != TNULL) ( return maximum(x.left); ) Node y = x.parent; while (y != TNULL && x == y.left) ( x = y; y = y.parent; ) return y; ) public void leftRotate(Node x) ( Node y = x.right; x.right = y.left; if (y.left != TNULL) ( y.left.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.left) ( x.parent.left = y; ) else ( x.parent.right = y; ) y.left = x; x.parent = y; ) public void rightRotate(Node x) ( Node y = x.left; x.left = y.right; if (y.right != TNULL) ( y.right.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.right) ( x.parent.right = y; ) else ( x.parent.left = y; ) y.right = x; x.parent = y; ) public void insert(int key) ( Node node = new Node(); node.parent = null; node.data = key; node.left = TNULL; node.right = TNULL; node.color = 1; Node y = null; Node x = this.root; while (x != TNULL) ( y = x; if (node.data < x.data) ( x = x.left; ) else ( x = x.right; ) ) node.parent = y; if (y == null) ( root = node; ) else if (node.data < y.data) ( y.left = node; ) else ( y.right = node; ) if (node.parent == null) ( node.color = 0; return; ) if (node.parent.parent == null) ( return; ) fixInsert(node); ) public Node getRoot() ( return this.root; ) public void printTree() ( printHelper(this.root, "", true); ) public static void main(String() args) ( RedBlackTree bst = new RedBlackTree(); bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); ) )
// Implementing Red-Black Tree in C #include #include enum nodeColor ( RED, BLACK ); struct rbNode ( int data, color; struct rbNode *link(2); ); struct rbNode *root = NULL; // Create a red-black tree struct rbNode *createNode(int data) ( struct rbNode *newnode; newnode = (struct rbNode *)malloc(sizeof(struct rbNode)); newnode->data = data; newnode->color = RED; newnode->link(0) = newnode->link(1) = NULL; return newnode; ) // Insert an node void insertion(int data) ( struct rbNode *stack(98), *ptr, *newnode, *xPtr, *yPtr; int dir(98), ht = 0, index; ptr = root; if (!root) ( root = createNode(data); return; ) stack(ht) = root; dir(ht++) = 0; while (ptr != NULL) ( if (ptr->data == data) ( printf("Duplicates Not Allowed!!"); return; ) index = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; ptr = ptr->link(index); dir(ht++) = index; ) stack(ht - 1)->link(index) = newnode = createNode(data); while ((ht>= 3) && (stack(ht - 1)->color == RED)) ( if (dir(ht - 2) == 0) ( yPtr = stack(ht - 2)->link(1); if (yPtr != NULL && yPtr->color == RED) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 0) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(1); xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; stack(ht - 2)->link(0) = yPtr; ) xPtr = stack(ht - 2); xPtr->color = RED; yPtr->color = BLACK; xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) else ( yPtr = stack(ht - 2)->link(0); if ((yPtr != NULL) && (yPtr->color == RED)) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 1) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; stack(ht - 2)->link(1) = yPtr; ) xPtr = stack(ht - 2); yPtr->color = BLACK; xPtr->color = RED; xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) ) root->color = BLACK; ) // Delete a node void deletion(int data) ( struct rbNode *stack(98), *ptr, *xPtr, *yPtr; struct rbNode *pPtr, *qPtr, *rPtr; int dir(98), ht = 0, diff, i; enum nodeColor color; if (!root) ( printf("Tree not available"); return; ) ptr = root; while (ptr != NULL) ( if ((data - ptr->data) == 0) break; diff = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; dir(ht++) = diff; ptr = ptr->link(diff); ) if (ptr->link(1) == NULL) ( if ((ptr == root) && (ptr->link(0) == NULL)) ( free(ptr); root = NULL; ) else if (ptr == root) ( root = ptr->link(0); free(ptr); ) else ( stack(ht - 1)->link(dir(ht - 1)) = ptr->link(0); ) ) else ( xPtr = ptr->link(1); if (xPtr->link(0) == NULL) ( xPtr->link(0) = ptr->link(0); color = xPtr->color; xPtr->color = ptr->color; ptr->color = color; if (ptr == root) ( root = xPtr; ) else ( stack(ht - 1)->link(dir(ht - 1)) = xPtr; ) dir(ht) = 1; stack(ht++) = xPtr; ) else ( i = ht++; while (1) ( dir(ht) = 0; stack(ht++) = xPtr; yPtr = xPtr->link(0); if (!yPtr->link(0)) break; xPtr = yPtr; ) dir(i) = 1; stack(i) = yPtr; if (i> 0) stack(i - 1)->link(dir(i - 1)) = yPtr; yPtr->link(0) = ptr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = ptr->link(1); if (ptr == root) ( root = yPtr; ) color = yPtr->color; yPtr->color = ptr->color; ptr->color = color; ) ) if (ht color == BLACK) ( while (1) ( pPtr = stack(ht - 1)->link(dir(ht - 1)); if (pPtr && pPtr->color == RED) ( pPtr->color = BLACK; break; ) if (ht link(1); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 0; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(1); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(1) || rPtr->link(1)->color == BLACK) ( qPtr = rPtr->link(0); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(0) = qPtr->link(1); qPtr->link(1) = rPtr; rPtr = stack(ht - 1)->link(1) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(1)->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) else ( rPtr = stack(ht - 1)->link(0); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 1; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(0); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(0) || rPtr->link(0)->color == BLACK) ( qPtr = rPtr->link(1); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(1) = qPtr->link(0); qPtr->link(0) = rPtr; rPtr = stack(ht - 1)->link(0) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(0)->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) ht--; ) ) ) // Print the inorder traversal of the tree void inorderTraversal(struct rbNode *node) ( if (node) ( inorderTraversal(node->link(0)); printf("%d ", node->data); inorderTraversal(node->link(1)); ) return; ) // Driver code int main() ( int ch, data; while (1) ( printf("1. Insertion 2. Deletion"); printf("3. Traverse 4. Exit"); printf("Enter your choice:"); scanf("%d", &ch); switch (ch) ( case 1: printf("Enter the element to insert:"); scanf("%d", &data); insertion(data); break; case 2: printf("Enter the element to delete:"); scanf("%d", &data); deletion(data); break; case 3: inorderTraversal(root); printf(""); break; case 4: exit(0); default: printf("Not available"); break; ) printf(""); ) return 0; )
// Implementing Red-Black Tree in C++ #include using namespace std; struct Node ( int data; Node *parent; Node *left; Node *right; int color; ); typedef Node *NodePtr; class RedBlackTree ( private: NodePtr root; NodePtr TNULL; void initializeNULLNode(NodePtr node, NodePtr parent) ( node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; ) // Preorder void preOrderHelper(NodePtr node) ( if (node != TNULL) ( cout right); ) ) // Inorder void inOrderHelper(NodePtr node) ( if (node != TNULL) ( inOrderHelper(node->left); cout left); postOrderHelper(node->right); cout left, key); ) return searchTreeHelper(node->right, key); ) // For balancing the tree after deletion void deleteFix(NodePtr x) ( NodePtr s; while (x != root && x->color == 0) ( if (x == x->parent->left) ( s = x->parent->right; if (s->color == 1) ( s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; ) if (s->left->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->right->color == 0) ( s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; ) s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; ) ) else ( s = x->parent->left; if (s->color == 1) ( s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; ) if (s->right->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->left->color == 0) ( s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; ) s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; ) ) ) x->color = 0; ) void rbTransplant(NodePtr u, NodePtr v) ( if (u->parent == nullptr) ( root = v; ) else if (u == u->parent->left) ( u->parent->left = v; ) else ( u->parent->right = v; ) v->parent = u->parent; ) void deleteNodeHelper(NodePtr node, int key) ( NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) ( if (node->data == key) ( z = node; ) if (node->data right; ) else ( node = node->left; ) ) if (z == TNULL) ( cout << "Key not found in the tree" left == TNULL) ( x = z->right; rbTransplant(z, z->right); ) else if (z->right == TNULL) ( x = z->left; rbTransplant(z, z->left); ) else ( y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) ( x->parent = y; ) else ( rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; ) rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; ) delete z; if (y_original_color == 0) ( deleteFix(x); ) ) // For balancing the tree after insertion void insertFix(NodePtr k) ( NodePtr u; while (k->parent->color == 1) ( if (k->parent == k->parent->parent->right) ( u = k->parent->parent->left; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->left) ( k = k->parent; rightRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); ) ) else ( u = k->parent->parent->right; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->right) ( k = k->parent; leftRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); ) ) if (k == root) ( break; ) ) root->color = 0; ) void printHelper(NodePtr root, string indent, bool last) ( if (root != TNULL) ( cout << indent; if (last) ( cout << "R----"; indent += " "; ) else ( cout right, indent, true); ) ) public: RedBlackTree() ( TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; ) void preorder() ( preOrderHelper(this->root); ) void inorder() ( inOrderHelper(this->root); ) void postorder() ( postOrderHelper(this->root); ) NodePtr searchTree(int k) ( return searchTreeHelper(this->root, k); ) NodePtr minimum(NodePtr node) ( while (node->left != TNULL) ( node = node->left; ) return node; ) NodePtr maximum(NodePtr node) ( while (node->right != TNULL) ( node = node->right; ) return node; ) NodePtr successor(NodePtr x) ( if (x->right != TNULL) ( return minimum(x->right); ) NodePtr y = x->parent; while (y != TNULL && x == y->right) ( x = y; y = y->parent; ) return y; ) NodePtr predecessor(NodePtr x) ( if (x->left != TNULL) ( return maximum(x->left); ) NodePtr y = x->parent; while (y != TNULL && x == y->left) ( x = y; y = y->parent; ) return y; ) void leftRotate(NodePtr x) ( NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) ( y->left->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->left) ( x->parent->left = y; ) else ( x->parent->right = y; ) y->left = x; x->parent = y; ) void rightRotate(NodePtr x) ( NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) ( y->right->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->right) ( x->parent->right = y; ) else ( x->parent->left = y; ) y->right = x; x->parent = y; ) // Inserting a node void insert(int key) ( NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) ( y = x; if (node->data data) ( x = x->left; ) else ( x = x->right; ) ) node->parent = y; if (y == nullptr) ( root = node; ) else if (node->data data) ( y->left = node; ) else ( y->right = node; ) if (node->parent == nullptr) ( node->color = 0; return; ) if (node->parent->parent == nullptr) ( return; ) insertFix(node); ) NodePtr getRoot() ( return this->root; ) void deleteNode(int data) ( deleteNodeHelper(this->root, data); ) void printTree() ( if (root) ( printHelper(this->root, "", true); ) ) ); int main() ( RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); )